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Abstract

An implicit structured-adaptive-mesh-refinement (SAMR) solver for 2D reduced
magnetohydrodynamics (MHD) is described. The time-implicit discretization is
able to step over fast normal modes, while the spatial adaptivity resolves thin,
dynamically evolving features. A Jacobian-free Newton-Krylov method is used for
the nonlinear solver engine. For preconditioning, we have extended the optimal
“physics-based” approach developed in [11] (which employed multigrid solver tech-
nology in the preconditioner for scalability) to SAMR grids using the well-known
Fast Adaptive Composite grid (FAC) method [35]. A grid convergence study demon-
strates that the solver performance is independent of the number of grid levels and
only depends of the finest resolution considered, and that it scales well with grid
refinement. The study of error generation and propagation in our SAMR imple-
mentation demonstrates that high-order (cubic) interpolation during regridding,
combined with a robustly damping second-order temporal scheme such as BDF2,
is required to minimize impact of grid errors at coarse fine interfaces on the overall
error of the computation for this MHD application. We also demonstrate that our
implementation features the desired property that the overall numerical error level
is dependent only on the finest resolution level considered, and not on the base-grid
resolution or on the number of refinement levels present during the simulation. We
demonstrate the effectiveness of the tool on several challenging problems.
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1 Introduction

The magnetohydrodynamics (MHD) model is useful for studying the macro-
scopic behavior of fully ionized gases (plasmas). Plasmas exhibit a wide range
of complex behavior, and are intrinsically multiscale both temporally and spa-
tially. While MHD provides a tractable model for the macroscopic description
of plasmas, it still presents formidable challenges for the numerical modeler.
In particular, MHD (even in its simplest form) supports multiple time scales
(which manifest in the form of waves) and multiple length scales (which man-
ifest in the form of microscopic layer formation, often with macroscopic rele-
vance).

Algorithmically, the multiscale nature of MHD needs to be addressed sep-
arately in time and space. Spatially, the dynamic formation of thin layers
requires grid adaptation that can respond dynamically. While there are many
options available for dynamic grid adaptation depending on the spatial repre-
sentation of choice (e.g., r-refinement, h-refinement, p-refinement), our focus
here is on h-refinement in the finite-volume context via structured adaptive
mesh refinement (SAMR). A SAMR grid is organized as a hierarchy of nested
refinement levels, with each level comprised of a union of rectangular patches.
As the locally refined grid evolves to follow important features in the solu-
tion, these levels are created and destroyed as needed, and the solution is
transferred from the old grid to the new grid to continue the simulation. We
use SAMRAI [26] to handle this complexity of grid and data management.
SAMR benefits from a structured block-based approach, which allows one to
straightforwardly retrofit structured-mesh codes into a SAMR framework.

Temporally, our interest is on applications where fast time scales are para-
sitic to a slower dynamical time scale of interest (such applications arise, for
instance, in fusion [48,46] and space [23,42] plasmas). Accordingly, it is of
interest to step over such fast time scales in order to resolve those of dynami-
cal interest, while preserving the temporal accuracy of the approach. Explicit
time integration methods are subject to stability constraints that arise from
the fastest time scales, and are inappropriate for this purpose because they
force the modeler to follow the fastest time scale supported. Fully-implicit
time integration methods allow stepping over fast time scales, since time steps
are generally constrained only by accuracy, not stability. However, they re-
quire the solution of large-scale systems of nonlinear equations at each time
step, and fast, robust solution methods are necessary for implicit methods to
be practical. Fortunately, Newton-Krylov methods [8] have provided such ro-
bust solvers for a variety of contexts [31], including MHD [11,10,9], provided
effective preconditioning is used. In Refs. [11,10,9], the key for algorithmic
performance was the use of multigrid methods in the preconditioner stage.
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Patch-based refinement in the context of MHD has been explored by many
previous studies in the literature, both in the context of finite volumes (see e.g.
[4,29,48,47,54,22]) and finite (and spectral) elements (e.g., [51,33,44]). In the
finite-volume context, these studies have focused on various aspects of both
the temporal and spatial discretization of the MHD equations on AMR grids.
Spatially, authors have explored both staggered [4] and cell-centered [29,48,47]
representations, with special emphasis on the preservation of conserved quan-
tities and the solenoidal property of the magnetic field. An interesting study
comparing the accuracy of finite volumes/differences vs. spectral elements in
an MHD-AMR context can be found in Ref. [38]. Temporally, most AMR
implementations have relied on explicit methods, albeit with some flavor of
time-step subcycling for better performance (see e.g. [4,29]). However, a num-
ber of authors have explored more advanced time-stepping algorithms, such as
partially implicit [47] (where hyperbolic terms are treated explicitly, and dif-
fusive terms implicitly), implicit/explicit [54] (where some blocks are treated
explicitly, while others are treated linearly implicitly), and fully implicit [22]
(although using inefficient direct solvers).

The focus of this study is to merge the SAMR dynamic adaptive grid ap-
proach with efficient, scalable fully implicit time integration, in the context
of MHD. For simplicity, we focus our attention on the 2D reduced resistive
MHD model [52,15,25], which is rigorously valid in the presence of a large
guide magnetic field. The reduced resistive MHD model has the advantage
of simplicity while maintaining a truly multiscale character, both temporally
and spatially. Furthermore, mature fully-implicit technology is available [11],
which will be reused for this study.

The advantages of fully implicit SAMR are obvious, as it enables dynamic re-
finement while decoupling the time integrator from the small explicit Courant-
Friedrichs-Lewy (CFL) stability limits ∆tCFL (which scales with the mesh size)
that would arise in the patches of finest resolution. Key to the effectiveness and
scalability of the proposed approach is to generalize the multigrid treatment
proposed in Refs. [11,10] to SAMR grids. This can be achieved with fast multi-
level methods that exploit the structure of the mesh, such as the Fast Adaptive
Composite grid (FAC) method [35], as has been already demonstrated in the
context of 2D radiation-diffusion [40].

Preliminary results on combining implicit time integration with SAMR for re-
sistive MHD were first reported in [41]. Here we expand the study to include
considerations of accuracy and provide details of our treatment of discretiza-
tion at coarse-fine interfaces. Section 2 describes the mathematical model and
its numerical discretization. Section 3 introduces the nonlinear solver of choice,
Jacobian-free Newton-Krylov methods, and the preconditioning approach to
make it efficient. The specifics of the coarse-fine interface treatment for this
application are provided in Sec. 4. Finally, numerical results focusing on per-
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formance and accuracy aspects of the solver are presented in Sec. 5, and we
conclude in Sec. 6.

2 Numerical model: Current-Vorticity Formulation of Reduced MHD

In the 2D reduced MHD (RMHD) formalism, the magnetic field component in
the ignorable direction Bz is much larger than the magnitude of the poloidal
magnetic field ~Bp. As a result, Bz ≈ constant and the poloidal velocity ~v
is incompressible (∇ · ~v = 0), and the general MHD formalism reduces to
[52,15,25]:

∇2Φ =ω, (1)

(∂t + ~v · ∇ − η

µ0

∇2)Ψ + E0 = 0, (2)

ρ(∂t + ~v · ∇ − ν∇2)ω=
1

µ0

~B · ∇J, (3)

where Φ is the poloidal velocity stream function (~v = ~z×∇Φ), ω is the vorticity
in the poloidal plane (ω = ~z · ∇ × ~v), Ψ is the poloidal flux function (which

gives ~Bp = ~z × ∇Ψ), ~B = ~Bp + Bz~z is the total magnetic field, J = ∇2Ψ is

the current, and ρ is the density (which is taken as constant). Note that ~B
always satisfies the solenoidal property. The source E0 (the applied electric
field in the z-direction) has been included to balance the resistive decay of
the equilibrium. The transport parameters (the kinematic viscosity ν and the

resistivity η) are assumed constant. We note that ~B ·∇ = ~Bp ·∇ since ∂z = 0,

but we keep ~B for the sake of generality.

Equations 1-3 are normalized as follows: ~B is normalized to the characteristic
poloidal magnetic field B0, ρ to the constant density ρ0, lengths to the domain
length in the y-direction Ly, and the time to the poloidal Alfvén time τA =
Ly/vA, where vA = B0/

√
ρ0µ0 is the Alfvén speed. The normalized set of

RMHD equations reads:

∂tω + ~v · ∇ω − ν∇2ω = ~B · ∇J
∂tΨ + ~v · ∇Ψ− η∇2Ψ = −E0

∇2Φ = ω

(4)

where η is the normalized resistivity (the inverse of the Lundquist number)
and ν is the normalized viscosity (the inverse of the Reynolds number).

While the form in (4) was successfully treated in [11], we have found that this
formulation is not well-suited for SAMR, due to difficulties discretizing the
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high-order term ~B · ∇J = ~B · ∇∇2Ψ at coarse-fine interfaces. This is similar
to difficulties reported in [51] for an ideal reduced MHD formulation. Instead,
following Refs. [51,33], we use the current-vorticity formulation obtained by
applying a ∇2 to the poloidal flux equation above, to obtain:

∂tω + ~v · ∇ω − ν∇2ω = ~B · ∇J
∂tJ + ~v · ∇J − ~B · ∇ω − {φ, ψ} − η∇2J = 0

∇2φ = ω

∇2ψ = J

(5)

where {φ, ψ} = 2[φxy(ψxx − ψyy) − ψxy(φxx − φyy)]. This formulation is ad-
vantageous because it avoids derivatives that are higher than second order,
and all dependent variables are determined from integration rather than dif-
ferentiation. However, it features two elliptic constraints instead of one in (4).
Furthermore, its implementation requires modifications to the semi-implicit
preconditioner developed in [11] for (4), which will be discussed later in this
paper (Sec. 3.2).

For the temporal discretization of (5), we will explore two approaches: a θ-
scheme (θ = 0.5 is second-order accurate, and corresponds to the Crank-
Nicolson scheme [12] ) and second-order backward differentiation formula
(BDF2) [13,21]. The θ-scheme reads:

(Jn+1−Jn)
∆t

+ [~v · ∇J ]n+θ − η∆Jn+θ = [ ~B · ∇ω]n+θ + {Φ,Ψ}n+θ

(ωn+1−ωn)
∆t

+ [~v · ∇ω]n+θ − ν∆ωn+θ = [ ~B · ∇J ]n+θ

∆Φn+θ = ωn+θ

∆Ψn+θ = Jn+θ

(6)

where n+ θ quantities are calculated as ξn+θ = (1− θ)ξn + θξn+1. The BDF2
scheme discretizes the temporal derivative terms by fitting a quadratic poly-
nomial using the n+1, n, and n−1 time levels, and then differencing it at the
new time level n+ 1. Unlike Crank-Nicolson, BDF2 features robust damping
of dissipative terms [21]. The purpose of considering these two approaches is
to compare their error propagation properties in the presence of coarse-fine
interfaces (Sec. 5).

Within AMR patches, spatial operators in (6) are discretized using second-
order centered finite differences. Following [11], advective terms are discretized
in non-conservative form, using centered differences. Boundary conditions (ei-
ther at physical boundaries or at coarse-fine interfaces) are imposed using
ghost cells. The spatial treatment of coarse-fine interfaces employed in this
application is described in detail later in this paper (Sec. 4).
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3 Nonlinear solution algorithm

Our general approach to the solution of (6) is via preconditioned Jacobian-free
Newton-Krylov methods (JFNK). These methods have demonstrated their ef-
fectiveness in many similar applications [31], including 2D reduced resistive
MHD [11] and Hall MHD [10], and 3D resistive MHD [9]. Our approach gen-
eralizes that of [11] in two fundamental ways: firstly, we have adapted the
preconditioning strategy to deal with the J − ω formulation instead of the
Ψ − ω formulation; and secondly, we have generalized the single-mesh multi-
grid treatment advocated in that reference to AMR meshes using the Fast
Adaptive Composite grid (FAC) method [35]. In what follows, we summarize
the JFNK philosophy and our approach to preconditioning. The next section
will deal with the AMR aspects of this application.

3.1 Jacobian-free Newton-Krylov Methods

Let F : Rn → Rn be a nonlinear function and consider calculating the solution
x? ∈ Rn of the system of nonlinear equations

F (x?) = 0. (7)

Classical Newton’s method for solving (7) generates a sequence of approxima-
tions xk to x?, where xk+1 = xk + sk and the Newton step sk is the solution
to the system of linear equations

F ′(xk)sk = −F (xk), (8)

where F ′ is the Jacobian of F evaluated at xk. Newton’s method is attractive
because of its fast local convergence properties, but for large-scale problems,
it is impractical to solve (8) with a direct method. Furthermore, it is often
useless to solve (8) using a tight convergence tolerance when xk is far from
x?, since the linearization that leads to (8) may be a poor approximation to
F (x). Generally, it is much more efficient to employ so-called inexact Newton
methods [14], in which the linear tolerance for (8) is selected adaptively by
requiring that sk only satisfy:

‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖ (9)

for some ηk ∈ (0, 1) [14]. When the forcing term ηk is chosen appropriately,
superlinear and even quadratic convergence of the iteration can be achieved
[16].
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While any iterative method can be used to find an sk that satisfies (9), Krylov
subspace methods are distinguished by the fact that they require only matrix-
vector products to proceed. These matrix-vector products can be approxi-
mated by a finite-difference version of the directional (Gâteaux) derivative
as:

F ′(xk)v ≈
F (xk + εv)− F (xk)

ε
, (10)

which is especially advantageous when F ′ is difficult to compute or expensive
to store (as is the case in this application due to the presence of multiple grid
patches). While the selection of a suitable differencing parameter ε may be
non-trivial for some applications, it is generally well-understood [28]. For this
application,

ε =
√
εmach

√
1 + ‖xk‖
‖v‖

,

where εmach is machine precision.

Among the various Krylov methods available, GMRES is selected because it
guarantees convergence with nonsymmetric, nonpositive definite systems [45]
(the case here because of flow and wave propagation), and because it provides
normalized Krylov vectors ‖v‖ = 1, thus bounding the error introduced in
the difference approximation of (10) (whose leading error term is proportional
to ε‖v‖2) [37]. However, GMRES can be memory intensive (storage increases
linearly with the number of GMRES iterations per Jacobian solve) and ex-
pensive (computational complexity of GMRES increases with the square of
the number of GMRES iterations per Jacobian solve). Restarted GMRES can
in principle deal with these limitations; however, it lacks a theory of con-
vergence, and stalling is frequently observed in real applications [32]. Here,
we focus on minimizing the number of GMRES iterations per Jacobian solve
for efficiency and robustness by: 1) using inexact Newton techniques (as de-
scribed above), and 2) improving the condition number of the Jacobian matrix
by preconditioning the problem. The next section describes our approach to
preconditioning.

3.2 Preconditioning

Implicit time differencing eliminates CFL-based stability constraints, allow-
ing us to select time steps independent of the level of mesh refinement, by
introducing dispersion in waves and by treating elliptic operators (such as
diffusion) nonlocally. However, some of the mechanisms that are sources of
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numerical instabilities in explicit methods continue to manifest themselves in
implicit schemes in the form of ill-conditioned algebraic systems, which itera-
tive techniques have difficulty in handling.

As is explained in [11], there are two sources of ill-conditioning in the system
of MHD equations: elliptic operators and hyperbolic couplings. The former
can be dealt with effectively with multilevel techniques. The latter, however,
cannot be unless the hyperbolic couplings are reformulated in a multilevel-
friendly fashion. References [11,10] provide a systematic way of doing this,
which we follow here.

3.2.1 Approximate formulation of the reduced MHD system

Krylov techniques are employed here to approximately solve (8) to the dynam-
ically selected tolerance (9) in each Newton step. Hence, the construction of
the physics-based preconditioner necessarily starts from the linearized system
of equations. For the system in (5), the linearized equations read (in block
form):



Lη −θB0 · ∇ UJ,ψ UJ,φ

−θB0 · ∇ Lν Uω,ψ Uω,φ

I 0 −∆ 0

0 I 0 −∆





δJ

δω

δΨ

δΦ

 =



rJ

rω

rψ

rφ

 (11)

where the diagonal blocks Lη and Lν read

Lη =
I

∆t
+ θ(u0 · ∇ − η∆) , Lν =

I
∆t

+ θ(u0 · ∇ − ν∆).

and the off-diagonal entries UJ,ψ, UJ,φ, Uω,ψ and Uω,φ are given by:

UJ,ψ = −θ(∇ω0 · ~z ×∇+ {φ0, ·}), UJ,φ = θ(∇J0 · ~z ×∇− {·, ψ0}),

and

Uω,ψ = −θ∇J0 · ~z ×∇, Uω,φ = θ∇ω0 · ~z ×∇.

In order to formulate an approximate, multilevel-friendly form of the linearized
set, we follow [11] to reduce the order of the δJ , δω equations by factoring out a
Laplacian operator (thus rendering equations for δΨ, δΦ, respectively). This is
done by first eliminating δJ and δω from the corresponding equations in favor
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of δΨ and δΦ (using the linearized elliptic constraints). In the δJ equation, one
can factor out the Laplacian operator trivially (since the Laplacian is a linear
operator, and the J equation was obtained by applying a Laplacian operator
onto the Ψ equation in the first place). In the δω equation, the Laplacian
operator can be factored out approximately in the same fashion as was shown
in [11]. After these transformations, there results the approximate system:

P

 δΨ

δΦ

 ≈ ∆−1


 rJ

rω

− P

 rΨ

rΦ


 ,

where

P ≡

 Lη −θB0 · ∇
−θB0 · ∇ Lν



is the same hyperbolic operator found in [11]. After solving for δΨ and δΦ,
one can recover δJ and δω by solving:

P

 δJ

δω

 =

 rJ − θ(δu · ∇J0 − δB · ∇ω0 − {δΦ,Ψ0} − {Φ0, δΨ})
rω − θ(δu · ∇ω0 − δB · ∇J0)

 ,

which again requires inverting P .

Following [11], systems of equations Pv = b are solved with a few iterations
of the stationary method obtained from the splitting

P =

 Lη −θB0 · ∇
−θB0 · ∇ Dν


︸ ︷︷ ︸

M

−

 0 0

0 Dν − Lν

 ,

with Dν the diagonal of the advection diffusion operator Lν . This splitting
results in the iteration:

vk+1 = vk +M−1(b− Pvk).

The inversion of M involves first a block factorization:

M =

 I −θ(B0 · ∇)D−1
ν

0 I


PSI 0

0 Dν


 I 0

θD−1
ν (B0 · ∇) I

 ,
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with PSI = Lη − θ2∇ · (B0D−1
ν BT

0∇), and then the inversion of the resulting
matrices, yielding:

M−1 =

 I 0

−θD−1
ν (B0 · ∇) I


P−1

SI 0

0 D−1
ν


 I θ(B0 · ∇)D−1

ν

0 I

 .

The implementation of M−1 only requires the (trivial) inversion of Dν (which
is a diagonal matrix), and the inversion of the semi-implicit operator PSI . The
latter is a parabolic operator, amenable to multilevel techniques, as described
in [11].

4 Adaptive Mesh Refinement

The previous discussion has considered the generalization of the physics-based
preconditioner proposed in Ref. [11] to the application at hand, without regard
to the specifics of the spatial discretization employed. In what follows, we
describe the AMR-specific details of our treatment of the MHD equations, with
particular emphasis on 1) the spatial discretization at coarse-fine interfaces,
2) the generalization of multilevel solvers for SAMR grids, and 3) regridding
and its impact on time integration.

4.1 Structured AMR Grids

Let Ω = [xlo , ylo ]× [xhi , yhi ] be a rectangular computational domain. We create
a discrete computational domain by subdividing [xlo , xhi ] into nx subintervals
with centers xi = x0 +(i+ 1

2
)hx with hx = (xhi −xlo)/nx for i = 0, . . . , nx− 1.

Each subinterval has faces located at xi− 1
2

= xi − hx/2 and xi+ 1
2

= xi + hx/2.

Likewise [ylo , yhi ] is partitioned into ny subintervals with centers yj = y0 +(j+
1
2
)hy with hy = (yhi − ylo)/ny for j = 0, . . . , ny − 1 and faces yj− 1

2
= yj − hy/2

and yj+ 1
2

= yj + hy/2. The tensor product of these subintervals partitions Ω

into a collection of computational cells Ωh = {Ωi,j} each with size hx × hy
centered at coordinates (xi, yj). These ideas are readily extended to the case
where Ω is a union of non-overlapping rectangular regions, and we continue
to use the same notation Ωh to denote such a collection of computational
cells. Such regular grids are in widespread use in computational science and
engineering, and a great deal of high quality software that is tuned to regular
grids, such as geometric multigrid methods, is available.

Let K ≥ 1 and Ω1 ≡ Ω ⊃ Ω2 ⊃ · · ·ΩK be a nested set of subdomains of the
computational domain Ω. For simplicity, assume that each Ω`, 2 ≤ ` ≤ K is
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Fig. 1. Example of a multilevel SAMR grid with three levels.

a union of non-overlapping rectangular regions; these are the subregions of Ω
where additional resolution is desired. A composite structured AMR (SAMR)
grid Ωc on Ω is a nested hierarchy of grids Ωh1

1 ⊃ Ωh2
2 ⊃ · · · ⊃ ΩhK

K consisting
of K levels, with mesh spacing h1 > h2 > · · · > hK , with the coarsest grid Ωh1

1

covering Ω. Each level Ωh`
` consists of a union of non-overlapping rectangular

regions, or patches, at the same resolution h`. When there is no risk of con-
fusion we will drop the ` subscript and simply refer to Ωh` . This hierarchical
representation allows operations on Ωc to be implemented as operations on
individual levels Ωh` , which in turn are decomposed into operations on indi-
vidual patches, each of which covers a rectangular region [xlo , ylo ]× [xhi , yhi ].
This property facilitates reuse of software written for regular grids. Figure 1
shows a SAMR grid with K = 3 and two patches on each of the two refine-
ment levels. Note that while each level is nested in the next coarser level,
there is no requirement that a patch at one refinement level is nested fully
in a patch at another refinement level, i.e., a fine patch at refinement level l
may lie over one or more coarser patches at refinement level (l − 1). Figure 2
shows the decomposition of a fairly complex SAMR grid with six refinement
levels into its constituent refinement levels and patches, as is encountered in
our simulations.

4.2 Function evaluation on SAMR grids

For a viable JFNK solver, a given application only needs to provide methods
to evaluate F , set up a preconditioner, and apply the preconditioner. By gener-
alizing these steps to a SAMR grid hierarchy, JFNK can be readily adapted to
SAMR applications. In this work, we use the PETSc parallel implementation
of JFNK [3], which is made SAMR-aware via the PETSc-SAMRAI interfaces
described in [39]. Considerations for evaluating F are described next.
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Fig. 2. The decomposition of a SAMR grid into its constituent refinement levels

4.2.1 Single grid discretization

In order to discretize F [given by (6)] in space, a cell-centered collocated finite-

volume scheme is used for ω, J,Φ, and Ψ. The magnetic field, ~B = (B1, B2)T,
and the velocity, ~v = (u1, u2)T, are also stored at cell centers, and are computed
using centered differences from Ψ and Φ, respectively, using the discrete curl
operations:

B1
i,j = −Ψi,j+1 −Ψi,j−1

2hy
,

B2
i,j =

Ψi+1,j −Ψi−1,j

2hx
,

(12)

and

u1
i,j = −Φi,j+1 − Φi,j−1

2hy
,

u2
i,j =

Φi+1,j − Φi−1,j

2hx
.

(13)

We note that this discretization ensures that the divergence-free conditions on
~B and ~v are satisfied locally to numerical round-off.

Diffusive operators are discretized in each cell (i, j) by first computing approx-
imate face-centered diffusive fluxes and then summing over the faces of each
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cell resulting in the standard five-point finite-volume discretization:

1

hxhy

∫
Ωi,j

∇ · ∇Ψ dA≈ Ψi+1,j −Ψi,j

h2
x

− Ψi,j −Ψi−1,j

h2
x

+ (14)

Ψi,j+1 −Ψi,j

h2
y

− Ψi,j −Ψi,j−1

h2
y

.

Advective quantities are discretized using standard centered differences. The
standard cell-centered difference discretization for the gradient operator can
be derived by using a variant of the Gauss theorem for gradients on each cell:

∫
Ωi,j

∇ω dA=
∫

∂Ωi,j

ωn ds

where n is the unit outward-facing normal on ∂Ωi,j, and approximating the
face centered values by averaging from cell centers. This results in

1

hxhy

∫
Ωi,j

∇ω dA =
ωi+1,j − ωi−1,j

2hx
~i+

ωi,j+1 − ωi,j−1

2hy
~j (15)

When applied to discretize quantities such as ~B · ∇ω using a finite-volume
formulation, we note that there is an implicit assumption that ~B is constant
over each cell.

4.2.2 Extension to SAMR grids

The discretizations described in the previous subsection are valid in the inte-
riors of individual patches as well as the boundaries between two patches on
the same refinement level. However, in order to maintain accuracy, changes
are required at the boundaries between coarse and fine patches. Figure 3 (left)
shows the interface between a coarse and fine patch. We use ghost cells (both
coarse and fine) for communication at coarse-fine interfaces, as well as be-
tween patches in the same refinement level. A fine ghost-cell (Figure 3, cen-
ter) overlaps one coarse cell. A coarse ghost-cell (Figure 3, right), however,
lies underneath four fine cells when a refinement ratio of 2 is used.

For computations of fine-ghost-cell values at coarse-fine interfaces, data is
quadratically interpolated from a combination of coarse and fine-grid cell data.
Figure 4(left) shows the coarse grid cells that would be involved in performing
quadratic tangential interpolation of coarse-grid data to align it with fine-
grid data. Figure 4(right) shows the piecewise quadratic normal interpolation
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Fig. 3. (left) A coarse-fine interface. (center) Fine ghost cell. (right) Coarse ghost
cell.
involving fine cells to calculate the fine-ghost-cell value. Once data has been
interpolated to fine ghost-cells, fine cells at coarse-fine interfaces can be treated
identically to cells that lie in the interior of the fine patch. Figure 4 only
shows the simplest case where a sufficient number of coarse cells (in this case,
three), are available to do standard quadratic interpolation tangential to the
interface. In general, for block-structured AMR, many special cases need to be
accounted for, where two or more fine patches may be adjacent to each other,
resulting in very irregular coarse-fine interfaces (see for example Figure 2). We
do not detail the adjustments needed in each of these cases to interpolate data
quadratically, due to space limitations. However, [2] provides a glimpse of the
types of adjustments required.
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Fig. 4. Schematic of interpolation. (Left) Crosses show coarse grid data aligned
with fine grid data by interpolation. (Right) Open circles denote fine ghost-cell
data obtained by interpolation from aligned coarse data and fine grid data.

Regarding coarse ghost-cells at coarse-fine interfaces, their treatment is done
as follows:

Magnetic and velocity fields: ~B and ~v are computed from Ψ and Φ us-
ing centered differences. While this maintains the vector fields divergence-free
everywhere, it requires values of Ψ and Φ to be available at the coarse ghost-
cells. A simple averaging of fine Ψ and Φ data to coarse ghost-cells produces
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second-order accurate coarse values, and therefore the resulting ~B and ~v are
only first-order accurate. Local first-order accuracy at coarse-fine interfaces
is unlikely to affect the global second-order accuracy of the calculation when
the number of coarse fine cells is small relative to the total number of cells.
However, Ref. [1] gives examples of cases not unlike the situations present in
our simulations where the number of coarse-fine interface cells can be up to
30% of the total number of cells. In such cases, global accuracy will be af-
fected by the local first-order accuracy at coarse-fine interfaces. To avoid this
situation, we use piecewise cubic interpolation of fine-grid data for Ψ, Φ to
coarse ghost-cells. This, in turn, results in second-order discretizations for the
vectors at coarse cells adjacent to the coarse-fine interface.

Diffusion operators: To compute the numerical diffusive fluxes at coarse
cells adjacent to the coarse-fine interface, it is possible to use coarse ghost-cell
values underlying the fine grid. However, for flux conservation, we compute
the diffusive fluxes at fine cell faces (as described in Sec. 4.2.1) and average
them down to provide the coarse flux at the coarse face.

Advection operators: Centered differences in each coarse cell are computed
by first computing face-averaged values of the advected quantity as described
in section 4.2.1. At coarse-fine interfaces, we follow Ref. [24] and find a coarse
face-averaged value by averaging fine face-averaged data. (The alternative is
to compute a coarse ghost-cell value directly from coarse data, but this does
not work as well.)

4.3 Regridding

For fully dynamic AMR simulations, the grid hierarchy will change during the
simulation as the solution evolves in time and space. This involves the addi-
tion of fine patches in regions where additional resolution is required and the
removal of patches in regions where coarser resolution is sufficient. The regrid-
ding process involves using some refinement indicator to determine required
grid resolution, and then constructing a new grid hierarchy based on this in-
formation. The ideal refinement indicator is a sharp estimate of the spatial
error that is inexpensive to compute. When such an estimate is not available,
refinement indicators that detect features in the solution, such as regions of
large gradients or curvature, are used. We detail the refinement indicators we
employ in this study in Sec. 5.

Once regridding is done, data needs to be transferred from the old grid hierar-
chy to the new one. Typically, the solution obtained on the old grid hierarchy
is no longer a solution on the new grid hierarchy. This has been observed in
our simulations as well as reported by others [6]. Two approaches are com-
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mon in the literature. One approach, referred to as the ”warm restart” [5],
continues the time integration on the new grid hierarchy (with a time step
comparable to that before regridding) using the interpolated data on the new
grid hierarchy. The second approach, called a ”cold restart” [5], alters the time
step and possibly the time integration scheme to account for regridding and
introduction of spatial errors.

In this study, we use a third approach. After interpolation of the required
vectors (including current and previous time-step solutions required for the
time integration scheme), we solve for the current time step solution on the
new grid hierarchy using the solution interpolated from the old grid hierarchy
as an initial guess. This synchronizes the current time step solution with the
new grid hierarchy before advancing in time. Numerically, this procedure is
robust, and avoids propagation of interpolation errors during regridding steps.
A detailed evaluation of all three approaches is reserved for future work.

4.4 Preconditioning and the Fast Adaptive Composite Grid Method

Physics-based preconditioning, as described in section 3.2, requires the inver-
sion of the parabolic operator PSI = Lη − θ2∇ · (B0D−1

ν BT
0∇). The operator

∇ · (B0D−1
ν BT

0∇) is negative definite and self-adjoint. The discretization of
this operator follows [50] so that it is compact (i.e., on a nine-point sten-
cil), and the resulting matrix is symmetric negative definite. We note that,
at coarse-fine interfaces, symmetry is lost. The convective operator in PSI is
discretized using a first-order upwind scheme for robustness (instead of the
centered differences employed to evaluate the nonlinear residual). This leads
to an algebraically better conditioned operator that increases the robustness
of the preconditioner but does not affect the accuracy of the solution, which
is determined by (7).

On a SAMR grid, the inversion of PSI is performed efficiently by using the Fast
Adaptive Composite grid (FAC) method [35,36]. FAC extends techniques from
multigrid on uniform grids to AMR grids. FAC solves problems on AMR grids
by combining smoothing on refinement levels with a coarse-grid solve using an
approximate solver, such as a V-cycle of multigrid. First we introduce some
notation to describe the FAC algorithm:

• I`c : Ωc → Ωh
` and Ic` : Ωh

` → Ωc respectively denote restriction and interpo-
lation operators between the composite SAMR grid, Ωc and an individual
refinement level. Here we use bilinear interpolation for Ic` and simple aver-
aging for I`c .

• I``+1 : Ωh
` → Ωh

`+1 and I`+1
` : Ωh

`+1 → Ωh
` respectively denote restriction and

interpolation operators between consecutive refinement levels.
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Algorithm 1. FAC

Initialize: rc = f c − Lcuc; f ` = I`cr
c

foreach Ωh
` , ` = J, . . . , 2

Smooth: L`e` = f `

Correct : uc = uc + Ic` e
`

Update : rc = f c − Lcuc
Set : f `−1 = I`−1

c rc

Solve : L1e1 = f 1

Correct: uc = uc + Ic1e
1

foreach Ωh
` , ` = 2, . . . , J

Update : rc = f c − Lcuc
Set : f ` = I`cr

c

Smooth: L`e` = f `

Correct : uc = uc + Ic` e
`

• Lc is the composite fine grid discrete operator obtained by discretizing the
PDE on Ωc, and L` approximates Lc on level `.

With this notation we can specify the FAC Method as in Algorithm 1. After
an initial residual is computed, smoothing is done on each level to determine
a correction to the solution on that level. The levels are treated sequentially,
from finest to coarsest, followed by a solve on the coarsest grid and then
smoothing and correction from the coarsest to the finest levels. Algorithm 1
depicts an FAC V-cycle; as with multigrid methods, it is possible to specify
alternative schedules for visiting levels, such as slash cycles or W-cycles.

Algorithm 1 makes clear the multiplicative nature of FAC: the residual is
updated with the latest correction information before each smoothing pass
can proceed. To be fully effective, each smoothing pass must properly account
for the data dependencies among different patches within a refinement level. In
our calculations, we use red-black Gauss-Seidel smoothing on each refinement
level; we also have the capability to use weighed-point-Jacobi or zebra-line
Gauss-Seidel smoothing. The correction steps require synchronization of the
composite grid solution to make it consistent on all refinement levels. Note
that the residual update can, in principle, be computed only on the most
recently corrected refinement level plus a small border on the next coarser
level, but we have found that residual evaluation is not expensive enough to
justify this optimization. On the coarsest level, we use one V-cycle of hypre’s
[17] implementation of semi-coarsening multigrid [49].
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5 Numerical results

This section introduces several challenging test cases with the goal of demon-
strating two main aspects of our implicit AMR implementation: algorith-
mic performance, and its accuracy properties. In regards to performance, we
demonstrate that the convergence properties of the iterative approach are es-
sentially independent of the number of grid levels present in the simulation
(for equivalent fine-level resolution), and that it has good scaling properties
with respect to the total number of unknowns. Both these aspects are central
in a scalable implicit AMR algorithm.

Accuracy and error propagation in the SAMR context is also a major subject
of this section. Clearly, the main motivation for using an AMR-based strategy
is to minimize the number of unknowns required to achieve a given error level,
by using fine resolution only where it is needed. However, time integration on
SAMR grids can pose additional difficulties and introduce sources of error not
encountered in uniform-grid calculations, especially at the interface between
coarse and fine refinement levels. For nonlinear problems, these errors can ex-
hibit themselves in unexpected ways that are often hard to identify and offset.
In fact, the potential exists that errors generated at coarse-fine interfaces, com-
bined with the wrong temporal integrator, may overwhelm the simulation and
result in errors that scale with the coarsest (instead of the finest) resolution
in the computational mesh.

A fundamental aspect for optimal error control in SAMR is the adequate
placement of patches within the domain. Careless placement of patches can
in fact offset any gains that may be obtained with the additional resolution
provided. Optimal placement of patches, in turn, requires suitable error esti-
mators. We will demonstrate the importance of this issue numerically later in
this section. For our test problems, we employ refinement indicators based on
the magnitude of the current, J , and the curvature in the vorticity, ω, as a
guide for patch placement. In particular, we compute the cell quantities

τ 1
i,j =

|(J)i,j|
max(i,j) |(J)i,j|

, τ 2
i,j =

|h2
x(ωxx)i,j|+ |h2

y(ωyy)i,j|
0.2 maxi,j |ωi,j|

. (16)

Here, ωxx and ωyy denote second-order partial derivatives of the vorticity in x
and y, respectively. The maximum values for J and ω in (16) are calculated
over each refinement level. Cells where τ 1

i,j > ε1 or τ 2
i,j > ε2 where ε1 and ε2 are

user chosen thresholds, are tagged for refinement. In this application ε1 = 0.65
and ε2 = 0.3. Similar error estimators are used in Refs. [6] and [1].

For the accuracy tests, since analytic solutions are not available, the numerical
error is computed by comparing a given SAMR simulation against a uniform
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fine-grid solution (512 × 512 unless otherwise specified), obtained with an
extremely small timestep.

In what follows, we discuss these issues for three test problems: a tearing mode
problem, the island coalescence problem, and the tilt instability problem. All
these problems feature the dynamic development of thin current layers, and
benefit from an AMR treatment.

5.1 Tearing Mode Problem

The first problem we consider is the tearing mode problem of [11]. Tearing
modes are resistive instabilities, with behavior strongly dependent on the de-
tails of the resistive layer at the rational surface (defined as the surface where
~B · ~k = 0, with ~k the wavevector of the magnetic perturbation). As the re-
sistive layer thickness scales as

√
η, the resolution issues become increasingly

challenging with smaller η.

Following [11], we pose the problem in a square domain Ω = [0, 4] × [0, 1],
with periodic boundary conditions in x and homogenous Dirichlet boundary
conditions in y for all variables. The initial conditions for this problem are
ω0(x, y) = Φ0(x, y) = 0, and Ψ0 given by the Harris sheet equilibrium:

Ψ0(x, y) =
1

λ
ln[cosh(λ(y − 1

2
))].

The initial current J0 is found as J0 = ∇2Ψ0. For the runs below, we have
used λ = 5 and η = ν = 10−3.

Figure 5 shows the evolution of the system at different times on a dynamic
SAMR grid with four refinement levels. The coarsest level is a uniform 32×32
grid, with the finest level providing the same resolution as a 256×256 uniform
grid. The refinement levels track the evolution of the tearing mode, providing
resolution only in localized regions.

5.1.1 Performance

Performance data for the tearing mode simulation are presented in Table 1.
These results have been obtained using ηk = 0.1, εrel = 0.0 and εabs = 1.0e−4,
and two iterations of the SI preconditioner. Within the preconditioner, two
V(3,3) cycles of FAC were used to invert the semi-implicit operator outlined
in Sec. 3.2. The implicit time step has been fixed to a multiple of the explicit
CFL, ∆t = 140∆tCFL (which corresponds to a time step of ∆t = 5 for the
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t = 50 t = 120 t = 200

Fig. 5. Time snapshots of current (top) and vorticity (bottom) for the tearing mode
problem.

coarsest 64× 32 grid), and we have averaged the performance results over the
course of the simulation up to Tmax = 250.

Table 1
Summary of performance for tearing mode. NNI: average number of nonlinear iter-
ations; NLI: average number of linear iterations.

NNI NLI

Levels 1 2 3 4 5 1 2 3 4 5

64× 32 2.4 2.7 2.8 2.8 2.7 8.2 10.3 14.1 15.8 16.4

128× 64 2.3 2.6 2.7 2.6 – 8.0 12.9 15.1 16.1 –

256× 128 2.0 2.1 2.4 – – 9.4 13.9 12.8 – –

512× 256 2.0 2.1 – – – 12.4 13.3 – – –

The first column of the Table specifies the resolution of the coarse grid, while
levels refers to the number of refinement levels active on the SAMR grid. Mov-
ing diagonally from left to right, for example from the cell corresponding to
the 512×256 grid with one refinement level to the cell with a 64×32 base grid
and five levels of refinement, we see that the number of nonlinear iterations,
NNI, remains more or less constant. The number of linear iterations, NLI,
grows slightly with resolution, both in single-grid and AMR computations.
Nevertheless, it is apparent that we are obtaining very similar solver perfor-
mance on a SAMR grid to what we would expect to see on a uniform grid
with comparable fine resolution.

20



This substantially equivalent solver performance is obtained for significantly
less computational effort and memory storage. For example, the 512 × 256
run requires a total wall-clock time of 29919 seconds while the equivalent
64× 32 run with 4 levels of refinement takes 4998 seconds of wall-clock time.
Furthermore, on average, the 64× 32 run with 4 levels of refinement requires
only 14% of the number of degrees of freedom that a uniform 512 × 256 run
would require. The timing runs were obtained on a MacBook Pro with a 2.33
GHz Intel Core 2 Duo processor, 2 GB of RAM, running Mac OS X 10.4.10.

Similar results both in solver performance as well as time and memory savings
were obtained in all our simulations.

5.1.2 Time-integration errors

We seek to characterize the importance of adequate interpolation order dur-
ing regridding to avoid discretization errors, and of robust damping in the
implicit temporal integration scheme to avoid error propagation throughout
the domain.

Fig. 6. Grid hierarchy and error in J after one regrid operation at t = 2.5 and
several time steps up to t = 7.5.

A common approach for time integration on AMR grids is to use linear inter-
polation to transfer data from an old grid hierarchy to a new grid hierarchy
during regridding. For problems with discontinuous coefficients and steep solu-
tion gradients [40], this works better than higher-order interpolation schemes.
However, linear interpolation is not suitable for all problems. Figure 6 depicts
the error in J on a SAMR grid after one regrid operation at t = 2.5 and subse-
quent time-stepping using Crank-Nicolson (CN) and quadratic interpolation
at coarse-fine interfaces up to t = 7.5. Linear interpolation was used to transfer
data from the old to the new grid hierarchy during regrid. The concentration
of discretization errors at coarse-fine interfaces introduced during regridding
is evident, despite the fact that quadratic interpolation was used at coarse-fine
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interfaces during the time evolution. Furthermore, the poor damping proper-
ties of CN preserves the memory of generated errors, even if the location of the
coarse-fine interfaces changes. To show this, we transfer the previous solution
at t = 7.5 to a uniform mesh with resolution equivalent to the finest SAMR
patch, and run the simulation further in time to t = 42.5. The result is de-
picted in Figure 7, and shows that the error in J generated during regridding
at coarse-fine interfaces remains throughout the calculation. We note that the
magnitude of the error does not appear to be changing significantly.

Fig. 7. Grid hierarchy and error in J after a second regrid operation to a uniform
mesh at t = 7.5 and subsequent time-stepping until t = 42.5.

A related test with a different initial grid configuration is shown in Figure 8.
In this case, the error in J is largest on the left and right coarse-fine interfaces
at time t = 7.5. After several dynamical regridding operations, the solution
has memory of errors generated at all coarse-fine interfaces during regridding,
and at time t = 42.5 the error (Figure 9) traces all coarse-fine interfaces that
have been present during the simulation. In this example, it is clear that, at
some locations, the error is actually being amplified further, as for example at
the left and right coarse-fine interfaces present in the initial grid hierarchy at
t = 7.5.

The previous examples illustrate potential sources of error that can accumu-
late due to a combination of a poor temporal integrator (CN) and low-order
interpolation during regridding, even if higher-order interpolation is used at
coarse-fine interfaces. Low-order interpolation generates spatial errors that
are not damped in time by the temporal scheme. Coarse-fine errors mostly
disappear when sufficiently high-order interpolation is used (both at regrid
operations and subsequently during time evolution) in combination with a ro-
bustly damping temporal scheme. Figure 10 shows plots of the error in J at
times t = 10 and t = 50, using cubic interpolation at regrid, quadratic interpo-
lation in between regrid operations, and BDF2 as the time integrator. In this
case, we see that there is no accumulation of error at coarse-fine interfaces,
even after several regrid operations have taken place.
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Fig. 8. Grid hierarchy and error in J at t = 7.5 after one regrid operation at t = 2.5.

Fig. 9. Grid hierarchy and error in J at t = 42.5 after several regridding operations.

5.2 Island Coalescence

In the island coalescence problem, two magnetic islands (current channels)
attract and reconnect. In resistive MHD, and during the reconnection process,
a thin, elongated current sheet forms at the reconnection site, which governs
the reconnection rate, and therefore the global dynamics [30]. As in the tearing
mode problem, the current thickness scales as

√
η, and therefore the problem

becomes computationally more challenging for smaller resistivities.

The island coalescence problem equilibrium is given by ω0(x, y) = Φ0(x, y) =
0, and Ψ0 defined as [20]:

Ψ0(x, y) = −λΨ ln
[
cosh

(
y

λΨ

)
+ ε cos

(
x

λΨ

)]
, (17)

where λΨ = 1
2π

is the current sheet equilibrium scale length, and ε = 0.2 is the
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Fig. 10. Plots of error in J for t = 10 and t = 50 using BDF2 for time integration
and cubic interpolation for regridding operations.

Fig. 11. Snapshots of the current at early stages of the coalescence process (t = 4,
left) and at the peak of the reconnection (t = 8, right) during the coalescence
process.

island width. The computational domain is Ω ∈ [−1, 1] × [−1, 1]. Boundary
conditions are Dirichlet in y, and periodic in x. Both η and ν are set to
10−4. The calculation is started with a perturbation in Ψ. Full dynamical
SAMR regridding is employed to adapt to developing features. The island
configuration at the early stages of the coalescence process is shown in Figure
11. The configuration at the peak of the reconnection rate, well in the nonlinear
stage, is shown in Figure 11, and shows the formation of the current sheet in
the symmetry plane between the islands. The multiscale nature of this problem
is evident.
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5.2.1 Numerical error generation and propagation

As mentioned earlier, the purpose of grid adaptation is to minimize the number
of degrees of freedom required for a given simulation, while being compatible
with a given numerical error level. In practice, the expectation is that the over-
all numerical error of the simulation does not increase due to the presence of
patches, and the related coarse-fine boundary treatment. Otherwise, it would
defeat the purpose of using a patch-based adaptive scheme in the first place.

We use the island coalescence problem to characterize the generation and
temporal propagation of errors in our SAMR implementation. We focus on
two main aspects of error generation in SAMR: 1) the treatment of coarse-fine
interfaces at patches’ boundaries, and 2) the placement of patches themselves.
The former is fundamentally a spatial discretization issue, whereas the latter
is more related to error estimation.

Figure 12 depicts several time histories of SAMR simulations featuring differ-
ent base grids and levels of refinement. The error is obtained with an “exact”
error detector, which compares the SAMR solution with the 512×512 reference
solution. The point of this plot is to establish that the error is fundamentally a
function of the finest resolution employed, and not a function of the base grid
size or the number of levels of refinement. For instance, the 64b3l, 128b2l, and
256b1l simulations feature the same error (time histories are actually superim-
posed), while using different base grid refinements and number of grid levels.
The same is true for 64b4l, 128b3l, and 256b2l (although error differences are
more noticeable due to the log scale of the plot). Another side point from this
figure is the impact that adding a level of refinement has on the overall error of
the computation: the error decreases about 2 orders of magnitude on average.

The effect of choice of refinement indicator is depicted in Figure 13, where time
histories of the numerical error resulting from two different error estimators are
provided. The exact error estimator is compared against an ad-hoc indicator
(16). The error plot labeled 128b3l-exact plots the magnitude of the L2 error
on an AMR grid with 3 levels, when the placement of patches is determined
by the “exact” error detector. Similarly, the error plot labeled 128b3l-feature
plots the error on an AMR grid determined using (16). Clearly, the overall
numerical error resulting from the ad-hoc approach is about two orders of
magnitude larger, almost offsetting the accuracy gains obtained by adding
refinement levels. This result underscores the importance of further research
on reliable error estimators for adaptive-grid applications. This is left for future
work.
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Fig. 12. Time histories of numerical errors for the island coalescence problem with
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which denotes an n× n base grid with m levels of refinement.
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Fig. 13. Time histories of numerical errors for the island coalescence problem with
different error estimators for patch placement.

5.3 Tilt Mode

The third model problem we consider is the tilt-mode instability [43,53,27].
The initial conditions are ω0(x, y) = Φ0(x, y) = 0, and Ψ0 given by:

Ψ0(x, y) =


2

kJ0(k)
J1(kr) cos(θ) if r ≤ 1

(r − 1
r
) cos(θ) if r > 126



with J0 = ∇2Ψ0. The boundary conditions are periodic in x and Dirichlet in
y for all variables. The system is perturbed from its initial equilibrium with
a rotational perturbation in Φ of the form: δΦ = 10−3e−r

2
. The domain for

this problem is Ω = [−2π, 2π] × [−5, 5]. The parameter k is the zero of the
Bessel function of the first kind, i.e., J1(k) = 0, and both η and ν are set to
10−3. The refinement criteria for this problem is also given by (16). Figure
5.3 shows snapshots of the current and vorticity during the evolution of the
tilt instability at times t = 4.0 (early in the linear phase) and t = 7.0 (well
in the nonlinear regime). This calculation required seven levels of refinement
starting from a coarse initial 64× 64 mesh.

As evolving features in this problem are extremely small compared to the do-
main size, this AMR calculation on average only required 0.36% of the degrees
of freedom of a uniform grid calculation (a uniform grid calculation would have
required 67108864 degrees of freedom, which corresponds to a 4096×4096 uni-
form grid with 4 unknowns per grid cell). This example serves to illustrate the
significant savings that AMR can provide over uniform grid calculations. We
note that the relatively small number of degrees of freedom enabled us to per-
form this calculation on a workstation, while a parallel machine would have
been required to perform the uniform-grid calculation.

6 Conclusions

We have described the implementation of a scalable, fully implicit, SAMR
simulation tool for 2D reduced resistive MHD. The tool employs Jacobian-
free Newton-Krylov methods as the solver engine. We use the reduced MHD
solver developed in [11] as a starting point, albeit with several modifications.
Following [51], we have reformulated the original problem (in terms of poloidal
flux, vorticity, and streamfunction) using the current as a dynamic variable
instead of the poloidal flux. This avoids issues with SAMR and the high-order
differentiation of the latter in terms like ~B · ∇J .

We have also extended the optimal “physics-based” approach developed in
[11] (which employed multigrid solver technology in the preconditioner for
scalability) for this application in two ways. Firstly, we have adapted the
preconditioner formulation to deal with J instead of Ψ, as required. Secondly,
we have extended the multilevel treatment in [11] to SAMR grids using the
well-known Fast Adaptive Composite grid (FAC) method [35]. As a result, our
approach inherits the algorithmic benefits of a multilevel treatment and the
accuracy benefits of dynamic grid adaptation.

We have demonstrated such benefits with several challenging tests. A grid
convergence study has shown that the solver performance is independent of
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Fig. 14. Current (left) and vorticity (right) during the evolution of the tilt instability
at times t = 4.0 (top) and t = 7.0 (bottom).

the number of grid levels and only depends of the finest resolution considered,
and that it scales well with grid refinement. The study of error generation and
propagation in our SAMR implementation demonstrates that piecewise cu-
bic interpolation at coarse-fine interfaces, combined with a robustly damping
second-order temporal scheme such as BDF2, is required to minimize impact
of such interfaces on the overall error of the computation. We also demon-
strate that our implementation features the desired property that the overall
numerical error is dependent only on the finest resolution level considered, and
not on the base-grid refinement or on the number of refinement levels present
during the simulation.

An open aspect in our implementation is the use of more grounded, rigorous
error estimators to select refinement patches, instead of our ad-hoc approach.
In fact, we have demonstrated numerically that our ad-hoc error estimator,
while effective, is far from optimal when compared with an exact one. In future
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work, we will explore more rigorous error estimators, such as the τ (or two-
grid) error estimator, which employs differences between two grid resolutions
to estimate the truncation error. The approach, which is rigourous in the
context of linear, conservative operators, can be used effectively for non-linear
ones (see e.g. Refs. [7,19,34,18] for theory and practical implementation details
and effectiveness of this error estimator in various contexts; in particular, Ref.
[18] employs it for an anisotropic AMR implementation).
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